

Picobox

Picobox is opinionated dependency injection [https://en.wikipedia.org/wiki/Dependency_injection] framework designed to be clean,
pragmatic and with Python in mind. No complex graphs, no implicit injections,
no type bindings, no XML configurations.

Why?

Dependency Injection (DI) design pattern is intended to decouple various parts
of an application from each other. So a class can be independent of how the
objects it requires are created, and hence the way we create them may be
different for production and tests.

One of the most easiest examples is to say that DI is essentially about writing

def do_something(my_service):
 return my_service.get_val() + 42

my_service = MyService(foo, bar)
do_something(my_service)

instead of

def do_something():
 my_service = MyService(foo, bar)
 return my_service.get_val() + 42

do_something()

because the latter is considered non-configurable and is harder to test.

In Python, however, dependency injection is not a big deal due to its dynamic
nature and duck typing: anything could be defined anytime and passed anywhere.
Due to that reason (and maybe some others) DI frameworks aren’t popular among
Python community, though they may be handy in some cases.

One of such cases is code decoupling when we want to create and use objects in
different places, preserving clean interface and avoiding global variables.
Having all these considerations in mind, Picobox was born.

Quickstart

Picobox provides Box class that acts as a container for objects you want
to deal with. You can put, you can get, you can pass them around.

import picobox

box = picobox.Box()
box.put('foo', 42)

@box.pass_('foo')
def spam(foo):
 return foo

@box.pass_('foo', as_='bar')
def eggs(bar):
 return bar

print(box.get('foo')) # 42

print(spam()) # 42
print(eggs()) # 42

One of the key principles is not to break existing code. That’s why Picobox
does not change function signature and injects dependencies as if they are
defaults.

print(spam()) # 42
print(spam(13)) # 13
print(spam(foo=99)) # 99

Another key principle is that pass_() resolves dependencies lazily which
means you can inject them everywhere you need and define them much later. The
only rule is to define them before calling the function.

import picobox

box = picobox.Box()

@box.pass_('foo')
def spam(foo):
 return foo

print(spam(13)) # 13
print(spam()) # KeyError: 'foo'

box.put('foo', 42)

print(spam()) # 42

The value to inject is not necessarily an object. You can pass a factory
function which will be used to produce a dependency. A factory function has
no arguments, and is assumed to have all the context it needs to work.

import picobox
import random

box = picobox.Box()
box.put('foo', factory=lambda: random.choice(['spam', 'eggs']))

@box.pass_('foo')
def spam(foo):
 return foo

print(spam()) # spam
print(spam()) # eggs
print(spam()) # eggs
print(spam()) # spam
print(spam()) # eggs

Whereas factories are enough to implement whatever creation policy you want,
there’s no good in repeating yourself again and again. That’s why Picobox
introduces scope concept. Scope is a way to say whether you want to share
dependencies in some execution context or not.

For instance, you may want to share it globally (singleton) or create only one
instance per thread (threadlocal).

import picobox
import random
import threading

box = picobox.Box()
box.put('foo', factory=random.random, scope=picobox.threadlocal)
box.put('bar', factory=random.random, scope=picobox.singleton)

@box.pass_('foo')
def spam(foo):
 print(foo)

@box.pass_('bar')
def eggs(bar):
 print(bar)

prints
> 0.9464005851114538
> 0.8585111290081737
for _ in range(2):
 threading.Thread(target=spam).start()

prints
> 0.5333214411659912
> 0.5333214411659912
for _ in range(2):
 threading.Thread(target=eggs).start()

But the cherry on the cake is a so called Picobox’s stack interface. Box
is great to manage dependencies but it requires to be created before using.
In practice it usually means you need to create it globally to get access
from various places. The stack interface is called to solve this by providing
general methods that will be applied to latest active box instance.

import picobox

@picobox.pass_('foo')
def spam(foo):
 return foo

box_a = picobox.Box()
box_a.put('foo', 13)

box_b = picobox.Box()
box_b.put('foo', 42)

with picobox.push(box_a):
 print(spam()) # 13

 with picobox.push(box_b):
 print(spam()) # 42

 print(spam()) # 13

spam() # RuntimeError: no boxes on the stack

When only partial overriding is necessary, you can chain pushed box so any
missed lookups will be proxied to the box one level down the stack.

import picobox

@picobox.pass_('foo')
@picobox.pass_('bar')
def spam(foo, bar):
 return foo + bar

box_a = picobox.Box()
box_a.put('foo', 13)
box_a.put('bar', 42)

box_b = picobox.Box()
box_b.put('bar', 0)

with picobox.push(box_a):
 with picobox.push(box_b, chain=True):
 print(spam()) # 13

The stack interface is recommended way to use Picobox because it allows to
switch between DI containers (boxes) on the fly. This is also the only way to
test your application because patching (mocking) globally defined boxes is
not a solution.

def test_spam():
 with picobox.push(picobox.Box(), chain=True) as box:
 box.put('foo', 42)
 assert spam() == 42

picobox.push() can also be used as a regular function, not only as a
context manager.

def test_spam():
 box = picobox.push(picobox.Box(), chain=True)
 box.put('foo', 42)
 assert spam() == 42
 picobox.pop()

Every call to picobox.push() should eventually be followed by a corresponding
call to picobox.pop() to remove the box from the top of the stack, when you
are done with it.

Note

Dependency Injection is usually used in applications, not libraries, to
wire things together. Occasionally such need may come in libraries too, so
picobox provides a picobox.Stack class to create an independent
non overlapping stack with boxes suitable to be used in such cases.

Just create a global instance of stack (globals themeselves aren’t bad),
and use it as you’d use picobox stacked interface:

import picobox

stack = picobox.Stack()

@stack.pass_('a', as_='b')
def mysum(a, b):
 return a + b

with stack.push(picobox.Box()) as box:
 box.put('a', 42)
 assert mysum(13) == 55

API reference

Box

	
class picobox.Box

	Box is a dependency injection (DI) container.

DI container is an object that contains any amount of factories, one for
each dependency apart. Dependency, on the other hand, is an ordinary
instance or value the container needs to provide on demand.

Thanks to scopes, the class keeps track of produced dependencies and knows
exactly when to reuse them or when to create new ones. That is to say each
scope defines a set of rules for when to reuse dependencies.

Here’s a minimal example of how a Box instance can be used:

import picobox

box = picobox.Box()
box.put('magic', 42)

@box.pass_('magic')
def do(magic):
 return magic + 1

assert box.get('magic') == 42
assert do(13) == 14
assert do() == 43

	
get(key, default=<optional>)

	Retrieve a dependency (aka service) out of the box instance.

The process involves creation of requested dependency by calling an
associated factory function, and then returning result back to the
caller code. If a dependency is scoped, there’s a chance for an
existing instance to be returned instead.

	Parameters

	
	key – A key to retrieve a dependency. Must be the one used when
calling put() method.

	default – (optional) A fallback value to be returned if there’s
no key in the box. If not passed, KeyError is raised.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no dependencies saved under key in the box.

	
pass_(key, as_=<optional>)

	Pass a dependency to a function if nothing explicitly passed.

The decorator implements late binding which means it does not require
to have a dependency instance in the box before applying. The instance
will be looked up when a decorated function is called. Other important
property is that it doesn’t change a signature of decorated function
preserving a way to explicitly pass arguments ignoring injections.

	Parameters

	
	key – A key to retrieve a dependency. Must be the one used when
calling put() method.

	as_ – (optional) Bind a dependency associated with key to
a function argument named as_. If not passed, the same as key.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no dependencies saved under key in the box.

	
put(key, value=<optional>, factory=<optional>, scope=<optional>)

	Define a dependency (aka service) within the box instance.

A dependency can be expressed either directly, by passing a concrete
value, or via factory function. A factory may be accompanied by
scope that defines a set of rules for when to create a new dependency
instance and when to reuse existing one. If scope is not passed, no
scope is assumed which means produce a new instance each time it’s
requested.

	Parameters

	
	key – A key under which to put a dependency. Can be any hashable
object, but string is recommended.

	value – A dependency to be stored within a box under key key.
Can be any object. A syntax sugar for factory=lambda: value.

	factory – A factory function to produce a dependency when needed.
Must be callable with no arguments.

	scope – A scope to keep track of produced dependencies. Must be
a class that implements Scope interface.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If both value and factory are passed.

ChainBox

	
class picobox.ChainBox(*boxes)

	ChainBox groups multiple boxes together to create a single view.

ChainBox for boxes is essentially the same as
ChainMap [https://docs.python.org/3/library/collections.html#collections.ChainMap] for mappings. It mimics Box
interface and hence can substitute one but provides a way to look up
dependencies in underlying boxes.

Here’s a minimal example of how ChainBox instance can be used:

box_a = picobox.Box()
box_a.put('magic_a', 42)

box_b = picobox.Box()
box_b.put('magic_a', factory=lambda: 10)
box_b.put('magic_b', factory=lambda: 13)

chainbox = picobox.ChainBox(box_a, box_b)

@chainbox.pass_('magic_a')
@chainbox.pass_('magic_b')
def do(magic_a, magic_b):
 return magic_a + magic_b

assert chainbox.get('magic_b') == 13
assert do() == 55

	Parameters

	boxes – (optional) A list of boxes to lookup into. If no boxes are
passed, an empty box is created and used as underlying box instead.

New in version 1.1.

	
get(key, default=<optional>)

	Same as Box.get() but looks up for key in underlying boxes.

	
put(key, value=<optional>, factory=<optional>, scope=<optional>)

	Same as Box.put() but applies to first underlying box.

Scopes

	
class picobox.Scope

	Scope is an execution context based storage interface.

Execution context is a mechanism of storing and accessing data bound to a
logical thread of execution. Thus, one may consider processes, threads,
greenlets, coroutines, Flask requests to be examples of a logical thread.

The interface provides just two methods:

	set() - set execution context item

	get() - get execution context item

See corresponding methods for details below.

	
get(key)

	Get value by key for current execution context.

	
set(key, value)

	Bind value to key in current execution context.

	
picobox.singleton

	Share instances across application.

	
picobox.threadlocal

	Share instances across the same thread.

	
picobox.contextvars

	Share instances across the same execution context (PEP 567 [https://www.python.org/dev/peps/pep-0567]).

Since asyncio does support context variables [https://docs.python.org/3.7/library/contextvars.html#asyncio-support], the scope could be used
in asynchronous applications to share dependencies between coroutines of
the same asyncio.Task [https://docs.python.org/3/library/asyncio-task.html#asyncio.Task].

New in version 2.1.

	
picobox.noscope

	Do not share instances, create them each time on demand.

	
picobox.contrib.flaskscopes.application

	Share instances across the same Flask (HTTP) application.

In most cases can be used interchangeably with picobox.singleton
scope. Comes around when you have multiple Flask applications [http://flask.pocoo.org/docs/1.0/patterns/appdispatch/] and you
want to have independent instances for each Flask application, despite
the fact they are running in the same WSGI context.

New in version 2.2.

	
picobox.contrib.flaskscopes.request

	Share instances across the same Flask (HTTP) request.

New in version 2.2.

Stacked API

	
class picobox.Stack(name=None)

	Stack is a dependency injection (DI) container for containers (boxes).

While Box is a great way to manage dependencies, it has no means
to override them. This might be handy most of all in tests, where you
usually need to provide a special set of dependencies configured for
test purposes. This is where Stack comes in. It provides the very
same interface Box does, but proxies all calls to a box on the top.

This basically means you can define injection points once, but change
dependencies on the fly by changing DI containers (boxes) on the stack.
Here’s a minimal example of how a stack can be used:

import picobox

stack = picobox.Stack()

@stack.pass_('magic')
def do(magic):
 return magic + 1

foobox = picobox.Box()
foobox.put('magic', 42)

barbox = picobox.Box()
barbox.put('magic', 13)

with stack.push(foobox):
 with stack.push(barbox):
 assert do() == 14
 assert do() == 43

Note

Usually you want to have only one stack instance to wire things up.
That’s why picobox comes with pre-created stack instance. You can
work with that instance using push(), pop(), put(),
get() and pass_() functions.

	Parameters

	name – (optional) A name of the stack.

New in version 2.2.

	
get(key, default=<optional>)

	The same as Box.get() but for a box at the top.

	
pass_(key, as_=<optional>)

	The same as Box.pass_() but for a box at the top.

	
pop()

	Pop the box from the top of the stack.

Should be called once for every corresponding call to push() in
order to remove the box from the top of the stack, when a caller is
done with it.

Note

Normally push() should be used a context manager, in which
case the box on the top is removed automatically on exit from
the block (i.e. no need to call pop() manually).

	Returns

	a removed box

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – If the stack is empty and there’s nothing to pop.

	
push(box, chain=False)

	Push a Box instance to the top of the stack.

Returns a context manager, that will automatically pop the box from the
top of the stack on exit. Can also be used as a regular function, in
which case it’s up to callers to perform a corresponding call to
pop(), when they are done with the box.

	Parameters

	
	box – A Box instance to push to the top of the stack.

	chain – (optional) Look up missed keys one level down the stack.
To look up through multiple levels, each level must be created with
this option set to True.

	
put(key, value=<optional>, factory=<optional>, scope=<optional>)

	The same as Box.put() but for a box at the top.

	
picobox.push(box, chain=False)

	The same as Stack.push() but for a shared stack instance.

New in version 1.1: chain parameter

	
picobox.pop()

	The same as Stack.pop() but for a shared stack instance.

New in version 2.0.

	
picobox.put(key, value=<optional>, factory=<optional>, scope=<optional>)

	The same as Stack.put() but for a shared stack instance.

	
picobox.get(key, default=<optional>)

	The same as Stack.get() but for a shared stack instance.

	
picobox.pass_(key, as_=<optional>)

	The same as Stack.pass_() but for a shared stack instance.

Release Notes

Note

Picobox follows Semantic Versioning [https://semver.org] which means
backward incompatible changes will be released along with bumping major
version component.

2.2.0

	Fix picobox.singleton, picobox.threadlocal & picobox.contextvars
scopes so they do not fail with unexpected exception when non-string
formattable missing key is passed.

	Add picobox.contrib.flaskscopes module with application and request
scopes for Flask web framework.

	Add picobox.Stack class to create stacks with boxes on demand. Might
be useful for third-party developers who want to use picobox yet avoid
collisions with main application developers.

2.1.0

	Add picobox.contextvars scope (python 3.7 and above) that can be used
in asyncio applications to have a separate set of dependencies in all
coroutines of the same task.

	Fix picobox.threadlocal issue when it was impossible to use any hashable
key other than str.

	Nested picobox.pass_ calls are now squashed into one in order to
improve runtime performance.

	Add Python 2.7 support.

2.0.0

Released on Mar 18, 2018.

	picobox.push() can now be used as a regular function as well, not only
as a context manager. This is a breaking change because from now one a box
is pushed on stack immediately when calling picobox.push(), no need to
wait for __enter__() to be called.

	New picobox.pop() function, that pops the box from the top of the stack.

	Fixed a potential race condition on concurrent calls to picobox.push()
that may occur in non-CPython implementations.

1.1.0

Released on Dec 19, 2017.

	New ChainBox class that can be used similar to ChainMap but for
boxes. This basically means from now on you can group few boxes into one
view, and use that view to look up dependencies.

	New picobox.push() argument called chain that can be used to look
up keys down the stack on misses.

1.0.0

Released on Nov 25, 2017.

	First public release with initial bunch of features.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 picobox	

 nav.xhtml

 Table of Contents

 		
 Picobox

_static/comment-bright.png

_static/plus.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

